Question	Answer	Mark
Number		
1(a)	Coherent: Waves of constant phase relationship	1
	Standing wave: no (net) transfer of energy OR pattern of nodes and antinodes	1
	OR points of maximum displacement and zero displacement	
(b)	00	
	Work must be clear and organised in a logical sequence	
	Calculation to show a path of 24 cm or 42 cm OR paths of 2λ and 3.5λ	1
	Path difference is $1 \frac{1}{2} \lambda$ OR divide path difference by 12	1
	Waves at X in antiphase /180° out of phase/ π radians out of phase	1
	destructive interference	1
	Example of answer	
	One path length = $18 \text{ cm} + 6 \text{ cm} = 24 \text{ cm}$	
	Other path length = $30 \text{ cm} + 12 \text{ cm} = 42 \text{ cm}$	
	Path difference = 42 cm - 24 cm = 18 cm	
	Number of wavelengths = $18/12 = 1.5$	
(c)	Food moves through hot and cold spots	1
	Over time period all parts of food receive similar amount of energy.	1
	Total for question	8

Question	Answer	Mark
Number		
2	Point A is half a wavelength from X (1)	
	At Y arrow drawn vertically downwards (1)	
	B marked at one of three positions of max displacement (1)	
	Total for question	3

Question	Answer	Mark
Number		
3 (a)(i)	Node correctly placed (1)	1
(a)(ii)	Arrow at Y moving up (1)	
	Arrow at Z moving down (1)	2
(b)	Identifies a factor of 3 (1)	
	Fundamental frequency = 0.5 Hz (1)	2
	Total for question	5

Question	Answer	Mark
Number		
4(a)	Waves must have same frequency or wavelength (1)	
	Waves must have same amplitude (1)	
	Waves must be 180°, $\frac{1}{2}$ wavelength, half a cycle, π radians apart or in	3
	antiphase (1)	
(b)	Noise of a vibrating object has a constant pitch/frequency (1)	
	Speech/sound varies in pitch and/or amplitude (1)	
	The idea of the difficult of matching a changing signal (1)	3
	Total for question	6

Question	Answer	Mark
Number		
5(a)	5% of 60 W (is 3 W) (1)	
	Use of $I = P / 4\pi r^2$ (1)	
	OR	
	Uses $I = P / 4\pi r^2$ with 60 W	
	Finds 5% of this answer	
	Intensity = 0.038 W m ⁻² (1)	3
	(accept 0.04 W m ⁻²)	
(b)	QWC - Work must be clear and organised in a logical manner using	
	technical wording where appropriate	
	Any three	
	Fluorescent lamp much more efficient OR filament lamp is less	
	Sensible attempt to process the values given (1)	
	Indicates that less than 25% of national power used for lighting (1)	
	Reduction in wasted energy as thermal energy (1)	
	Reduction in CO_2 emission or preserves fossil fuel resources (1)	Max 3
	(hat easing filement laws is inefficient date and a set of 1 st are all)	
	(Just saying mament lamp is inefficient does not score 1° mark)	
	Total for question	6
		-

Question	Answer	Mark
Number		
6 (a)	Use of distance = speed × time (1)	
	Recognising distance travelled is twice the measurement or halves the	
	time given (1)	3
	Distance = 4.1 m (1)	
	Example of calculation	
	Distance = $(330 \text{ m s}^{-1} \times 25 \times 10^{-3} \text{ s}) \div 2$	
	Distance = 4.125 m	
(b)	One pulse must return before the next one is sent	
	OR	
	So that time interval between transmitted and received pulses can be	1
	measured	
	OR	
	No overlap between pulses	
	OR	
	No interference between pulses	
	Total for question	4

Question	Answer	Mark
Number		
7(a)	LED 1 colour green	
	LED 2 colour orange	
	LED 3 colour red All three correct	1
(b)	Least energetic photon Use of E = hf or hc/ λ must see correct value of h (1) Use of f = 4.41 ×(10 ⁻¹⁴) Hz or equivalent λ (1) E = 2.92 × 10 ⁻¹⁹ J (1) (E = 1.83 eV gets full credit) Example of calculation	3
	$E = 6.63 \times 10^{-34} \text{ J s} \times 4.41 \times 10^{-14} \text{ Hz}$ $E = 2.92 \times 10^{-19} \text{ J}$	
	Total for question	4

Question	Answer		Mark
Number			
8 (a)	Use of distance = speed x time	(1)	
	Time = $1.7 \times 10^{-8} s$	(1)	2
	Example of calculation		
	$t = s \div v$		
	$= 5.0 \text{ m} \div 3.0 \times 10^8 \text{ m s}^{-1}$		
	Time = $1.67 \times 10^{-8} s$		
8(b)			
	Pulses, so the reflected signal is received before next one is sent		
	Or otherwise there wouldn't be a way of telling which bit of reflected IR		
	originated with which bit of emitted IR		
	Or so that reflected pulses can be distinguished from each other	(1)	1
8(c)	Accept any sensible reason,		
	Examples: could interfere with what is being looked at		
	light from the background could interfere with the signal	(1)	1
	Total for question 12		4

Question	Answer		Mark
Number			
*9(a)	(QWC – Work must be clear and organised in a logical manner using		
	technicalwording where appropriate)		
	a standing/stationary wave	(1)	
	a standing/stationally wave	(1)	
	Waves from the generator are reflected at the end		
	Or waves are travelling in both directions	(1)	
	(When the two) waves (meet they) <u>superpos</u> e/undergo <u>superpos</u> ition	(1)	
	Producing points where the waves are in phase and points where they are in		
	antiphase		
	Or producing points of zero amplitude and points of maximum amplitude OR		
	producing nodes and antinodes	(1)	4
9 b)	Wavelength = 2×1.8 m	(1)	
	Use of speed = wavelength x frequency $1 = 1200$	(1)	2
	Speed = 1200 m s^2	(1)	3
	Example of calculation		
	$\lambda = 2 \times 1.8 \text{ m}$		
	$v = 330 \text{ Hz} \times 3.6 \text{ m}$		
	$v = 1188 \text{ m s}^{-1}$		
9(c)(i)	Point is a node, so zero amplitude OR Point is a node, so string not moving	(1)	
	So no energy absorbed Or Waves continue to move after superposition	(1)	2
0 (a)(jj)	(Original fragmany x 2) = 660 Hz	(1)	1
9(C)(II)	(Original frequency x 2) = 000 Hz	(1)	1
9(c)(iii)	Captured twice per cycle = 1320 Hz (allow ecf from (c) (iii))	(1)	
	If more than 1320 Hz will be captured at points other than max amplitude	(1)	2
9(d)	Scale divisions of 20 Hz Or Wide pointer Or nominal output (only)	(1)	
			_
	Lack of precision (scale related) Or Lack of accuracy (output related)	(1)	2
	Total for quartier 19		14
	1 otal for question 18		14